×

克拉默法则和克莱姆

克拉默法则和克莱姆(【考研 数学】考研数三大纲对克拉默法则是否有要求)

fwxlw fwxlw 发表于2025-01-19 11:40:05 浏览19 评论0

抢沙发发表评论

本文目录

【考研 数学】考研数三大纲对克拉默法则是否有要求

  考研数三大纲对克拉默法则没有特殊的要求。  克莱姆法则,又译克拉默法则(Cramer’s Rule)是线性代数中一个关于求解线性方程组的定理。它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。  考研数学复习计划  1、数学侧重点在于先全面整理一下基本概念、定理、公式及其基本应用,也要开始大量做题。因为做题很耗时间,一旦进入强化期开始复习政治之后,就不可能再占用大量时间做题了。  2、由于政治已经开始复习,因此数学时间会相应减少,做题数量也不可能很多。因此,要在首轮复习大量练习的基础上,回头总结、归纳,提炼解题规律。  3、逐步恢复做题练习量,进行大量模拟训练,一方面进一步提高解题速度和准确率,另一方面使解题状态上升,最好能在考试时达到最佳点。

克莱姆法则的内容是什么

克莱姆法则,又译克拉默法则(Cramer’s Rule)是线性代数中一个关于求解线性方程组的定理。

1、当方程组的系数行列式不等于零时,则方程组有解,且具有唯一的解;

2、如果方程组无解或者有两个不同的解,那么方程组的系数行列式必定等于零

3、克莱姆法则不仅仅适用于实数域,它在任何域上面都可以成立。

对于多于两个或三个方程的系统,克莱姆的规则在计算上非常低效;与具有多项式时间复杂度的消除方法相比,其渐近的复杂度为O(n·n!)。即使对于2×2系统,克拉默的规则在数值上也是不稳定的 。

它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。其实莱布尼兹〔1693〕,以及马克劳林〔1748〕亦知道这个法则,但他们的记法不如克莱姆。

扩展资料

不确定的情况

当方程组没有解时,称为方程组不兼容或不一致,当存在多个解决方案时,称为不确定性。对于线性方程,不确定的系统将具有无穷多的解(如果它在无限域上),因为解可以用一个或多个可以取任意值的参数来表示。

克拉默规则适用于系数行列式非零的情况。在2×2的情况下,如果系数行列式为零,则如果分子决定因子为非零,则系统不兼容,如果分子决定因素为零,则系统不兼容。

对于3×3或更高的系统,当系数行列式等于零时,唯一可以说的是,如果任何分子决定因素是非零的,那么系统必须是不兼容的。然而,将所有决定因素置零都不意味着系统是不确定的。 3×3系统x + y + z = 1,x + y + z = 2,x + y + z = 3的一个简单的例子,其中所有决定因素消失(等于零)但系统仍然不兼容。

克莱姆和克拉默是一样的吗

一样的。

克莱姆法则,又译克拉默法则(Cramer’s Rule)是线性代数中一个关于求解线性方程组的定理。它适用于变量和方程数目相等的线性方程组。

是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。其实莱布尼兹〔1693〕,以及马克劳林〔1748〕亦知道这个法则,但他们的记法不如克莱姆。

克莱姆生平简介

他自1727年进行为期两年的旅行访学。在巴塞尔与约翰.伯努利、欧拉等人学习交流,结为挚友。后又到英国、荷兰、法国等地拜见许多数学名家,回国后在与他们的长期通信中,加强了数学家之间的联系,为数学宝库也留下大量有价值的文献。

1734年成为几何学教授。1750年任哲学教授。他一生未婚,专心治学,平易近人且德高望重,先后当选为伦敦皇家学会、柏林研究院和法国、意大利等学会的成员。

克拉默法则解方程组是什么

克莱姆法则,又译克拉默法则(Cramer’s Rule)是线性代数中一个关于求解线性方程组的定理。

它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。其实莱布尼兹〔1693〕,以及马克劳林〔1748〕亦知道这个法则,但他们的记法不如克莱姆。

资料:

一般来说,用克莱姆法则求线性方程组的解时,计算量是比较大的。使用克莱姆法则求线性方程组的解的算法时间复杂度依赖于矩阵行列式的算法复杂度O(f(n)),其复杂度为O(n·f(n)),一般没有计算价值,复杂度太高。

对具体的数字线性方程组,当未知数较多时往往可用计算机来求解。用计算机求解线性方程组目前已经有了一整套成熟的方法。

克莱默法则是指什么

克莱默法则是指线性代数中一个关于求解线性方程组的定理。

适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。其实莱布尼兹,以及马克劳林亦知道这个法则,但他们的记法不如克莱姆。

克莱姆法则的局限性:

1、当方程组的方程个数与未知数的个数不一致时,或者当方程组系数的行列式等于零时,克莱姆法则失效。

2、运算量较大,求解一个N阶线性方程组要计算N+1个N阶行列式。

克莱姆法则是什么

克莱姆法则 克莱姆法则〔Cramer’s Rule〕是瑞士数学家克莱姆〔1704-1752〕於1750年,在他的《线性代数分析导言》中发表的。他在确定五个点的二次曲线方程A + Bx + Cy + Dy2 + Exy + x2 = 0的系数时,提出了本法则: 假若有n个未知数,n个方程组成的方程组: a11x1+a12x2+...+a1nxn = b1, a21x1+a22x2+...+a2nxn = b2, ...... an1x1+an2x2+...+annxn = bn. 而当它的系数行列式D不等於0的时候,根据克莱姆法则,它的解是当中的Di〔i = 1,2,……,n〕是D中的a 1i,a 2i,……a ni依次换成b1,b2,……bn所的行列式。 其实莱布尼兹〔1693〕,以及马克劳林〔1748〕亦知道这个法则,但他们的记法不如克莱姆