本文目录
- 怎么样用excel进行Granger因果检验
- 跪求,坐等!!!!两组数据格兰杰因果检验结果怎么看
- 用EVIEWS计算格兰杰因果关系
- 举例说明格兰杰因果关系
- 格兰杰因果检验和向量自回归(VAR)模型问题 急急!!
- 什么是格兰杰因果关系检验简答题
- 谁能给我发一个格兰杰检验的实例O(∩_∩)O谢谢
- Eviews 如何做格兰杰检验
怎么样用excel进行Granger因果检验
原理:如果一个事件A的发生与不发生对于另一个事件B的发生的概率(如果通过事件定义了随机变量那么也可以说分布函数)有影响,并且这两个事件在时间上又先后顺序(A前B后),那么我们便可以说A是B的原因。F统计值 Probability A dose not Granger cause B x yB dose not Granger cause A z wgranger因果关系检验又可以称为granger非因果关系检验。在上表中,x与y是对应的,z与w是相互对应的。y与w是eviews软件根据x与z值计算出来的概率值,这样可以省去了查表的麻烦。即根据x或是y值来判断A是不是B的granger因都是可以的。那么,在5%的显著性水平下,我们只要看看y和w的值与5%的关系就可以了。如果y《5%,即F检验没有通过,即拒绝“A does not Granger cause B”,也就是说A是B的格兰杰因。如果y》5%,即F检验通过了,就接受“A does not Granger cause B”,也就是说,A不是B的格兰杰因。同样的方法可以分析w与5%的关系。如果y和w都小于5%,那么A与B就互为因果关系。 实现的具体方法:在EXCEL中通过选择菜单: 工具--加载宏--分析工具库,就加载了数据分析的功能。通过选择菜单:工具--数据分析--回归,对两列数据分别做为X和Y做两次回归,就可得到F值,及相应的P值。
跪求,坐等!!!!两组数据格兰杰因果检验结果怎么看
在5%显著性水平上,X不是Y的格兰杰原因,Y也不是X的格兰杰原因。
基于格兰杰检验原理和数据,得不出想要的结论,如果证明X可以影响Y,Y也可以影响X可以做VAR模型,Y对X的影响大于X对Y的影响,同理,PGDP不是SL的格兰杰原因的概率是0.3207,这个概率很大,超过置信度,所以,意思就是“PGDP不是SL的格兰杰原因”。
情形讨论:
(1)x是引起y变化的原因,即存在由x到y的单向因果关系。若式(1)中滞后的x的系数估计值在统计上整体的显著不为零,同时式(2)中滞后的y的系数估计值在统计上整体的显著为零,则称x是引起y变化的原因。
(2)y是引起x变化的原因,即存在由y到x的单向因果关系。若式(2)中滞后的y的系数估计值在统计上整体的显著不为零,同时式(1)中滞后的x的系数估计值在统计上整体的显著为零,则称y是引起x变化的原因。
用EVIEWS计算格兰杰因果关系
是否拒绝原假设关键看P值,一般原假设下发生小概率事件就可以认定原假设错误,应该拒绝原假设,实际应用中,0.01 0.05 0.1 是常用的小概率事件判定标准,只要P值很小(譬如小于0.05)就应该拒绝原假设。 假设检验基于一定的概率分布,譬如正态分布、t分布、卡方分布、F分布等等,一般方差分析,当然还有其他一些分析,需要借助F分布 下面解释下你的两张表格: 表1做的是对序列GDP和LEC的平稳性检验,用的是ADF检验方法,原因是格兰杰检验前提是序列必须是平稳的,如果非平稳,也就是存在单位根问题,就需要对序列进行相应转换,譬如差分转换、对数转换等等,一直要转换到序列能通过平稳性检验才可以用格兰杰因果检验, 从表中来看,序列GDP (I,T,2) 、LEC (I,T,2)的ADF检验值和临界值对照,结果不是平稳序列 ΔGDP (0,0,0)、ΔLEC (0,0,0)则是平稳的 表2就是因果检验,就是滞后期不同而已,实际上默认2期时看下就差不多的,用不着做那么多,从检验来看LEC是GDP的格兰杰原因,而GDP非LEC格兰杰原因(看下P值就知道是否应该拒绝原假设了)
举例说明格兰杰因果关系
要探讨因果关系,首先当然要定义什么是因果关系。这里不再谈伽利略抑或休谟等人在哲学意义上所说的因果关系,只从统计意义上介绍其定义。从统计的角度,因果关系是通过概率或者分布函数的角度体现出来的:在宇宙中所有其它事件的发生情况固定不变的条件下,如果一个事件A的发生与不发生对于另一个事件B的发生的概率(如果通过事件定义了随机变量那么也可以说分布函数)有影响,并且这两个事件在时间上又先后顺序(A前B后),那么我们便可以说A是B的原因。 早期因果性是简单通过概率来定义的,即如果P(B|A)》P(B)那么A就是B的原因(Suppes,1970);然而这种定义有两大缺陷:一、没有考虑时间先后顺序;二、从P(B|A)》P(B)由条件概率公式马上可以推出P(A|B)》P(A),显然上面的定义就自相矛盾了(并且定义中的“》”毫无道理,换成“《”照样讲得通,后来通过改进,把定义中的“》”改为了不等号“≠”,其实按照同样的推理,这样定义一样站不住脚)。 事实上,以上定义还有更大的缺陷,就是信息集的问题。严格讲来,要真正确定因果关系,必须考虑到完整的信息集,也就是说,要得出“A是B的原因”这样的结论,必须全面考虑宇宙中所有的事件,否则往往就会发生误解。最明显的例子就是若另有一个事件C,它是A和B的共同原因,考虑一个极端情况:若P(A|C)=1,P(B|C)=1,那么显然有P(B|AC)=P(B|C),此时可以看出A事件是否发生与B事件已经没有关系了。 因此,Granger(1980)提出了因果关系的定义,他的定义是建立在完整信息集以及发生时间先后顺序基础上的。至于判断准则,也在逐步发展变化: 最初是根据分布函数(条件分布)判断,注意Ωn是到n期为止宇宙中的所有信息,Yn为到n期为止所有的Yt (t=1…n),Xn+1为第n+1期X的取值,Ωn-Yn为除Y之外的所有信息。 F(Xn+1 | Ωn) ≠ F(Xn+1 | (Ωn �6�1 Yn)) - - - - - - - (1) 后来认为宇宙信息集是不可能找到的,于是退而求其次,找一个可获取的信息集J来替代Ω: F(Xn+1 | Jn) ≠ F(Xn+1 | (Jn �6�1 Yn)) - - - - - - - (2) 再后来,大家又认为验证分布函数是否相等实在是太复杂,于是再次退而求其次,只是验证期望是否相等(这种叫做均值因果性,上面用分布函数验证的因果关系叫全面因果性): E(Xn+1 | Jn) ≠ E(Xn+1 | (Jn �6�1 Yn)) - - - - - - - (3) 也有一种方法是验证Y的出现是否能减小对Xn+1的预测误差,即: σ2(Xn+1 | Jn) 《 σ2(Xn+1 | (Jn �6�1 Yn)) - - - - - - - (4) 最后一种方法已经接近我们最常用的格兰杰因果检验方法,统计上通常用残差平方和来表示预测误差,于是常常用X和Y建立回归方程,通过假设检验的方法(F检验)检验Y的系数是否为零。 可以看出,我们所使用的Granger因果检验与其最初的定义已经偏离甚远,削减了很多条件(并且由回归分析方法和F检验的使用我们可以知道还增强了若干条件),这很可能会导致虚假的因果关系。因此,在使用这种方法时,务必检查前提条件,使其尽量能够满足。此外,统计方法并非万能的,评判一个对象,往往需要多种角度的观察。正所谓“兼听则明,偏听则暗”。诚然真相永远只有一个,但是也要靠科学的探索方法。
格兰杰因果检验和向量自回归(VAR)模型问题 急急!!
逻辑思路好像有问题。VAR模型建立之后,再用granger 因果部分检验其合理性。而VAR模型的建立(即滞后阶数的选取),不是依据granger因果关系是否成立的。对于VAR模型,一般不选择外生变量。因为外生、内生很难界定(sims的观点)。当然若确实有理论基础或数据不够长时,也可采用外生变量,这时可以参考granger因果关系的结果。
什么是格兰杰因果关系检验简答题
在时间序列情形下,两个经济变量X、Y之间的格兰杰因果关系定义为:若在包含了变量X、Y的过去信息的条件下,对变量Y的预测效果要优于只单独由Y的过去信息对Y进行的预测效果,即变量X有助于解释变量Y的将来变化,则认为变量X是引致变量Y的格兰杰原因。
谁能给我发一个格兰杰检验的实例O(∩_∩)O谢谢
需‖要*‖女‖-孩 -‖陪-‖你-‖爽- ‖-的 -‖‖-朋‖-友→,来:, l.六 .八C八-点 -匸 -〇 ,M 《p align=center》单位根检验、协整检验和格兰杰因果关系检验三者之间的关系 实证检验步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。《/p》一、讨论一1、单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。《/p》2、当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。《/p》3、当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验《/p》A、EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性《/p》B、JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)《/p》4、当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别《/p》 二、讨论二1、格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。《/p》2、非平稳序列很可能出现伪回归,协整的意义就是检验它们的回归方程所描述的因果关系是否是伪回归,即检验变量之间是否存在稳定的关系。所以,非平稳序列的因果关系检验就是协整检验。《/p》3、平稳性检验有3个作用:1)检验平稳性,若平稳,做格兰杰检验,非平稳,作协正检验。2)协整检验中要用到每个序列的单整阶数。3)判断时间学列的数据生成过程。《/p》 三、讨论三其实很多人存在误解。有如下几点,需要澄清:第一,格兰杰因果检验是检验统计上的时间先后顺序,并不表示而这真正存在因果关系,是否呈因果关系需要根据理论、经验和模型来判定。《/p》第二,格兰杰因果检验的变量应是平稳的,如果单位根检验发现两个变量是不稳定的,那么,不能直接进行格兰杰因果检验,所以,很多人对不平稳的变量进行格兰杰因果检验,这是错误的。《/p》第三,协整结果仅表示变量间存在长期均衡关系,那么,到底是先做格兰杰还是先做协整呢?因为变量不平稳才需要协整,所以,首先因对变量进行差分,平稳后,可以用差分项进行格兰杰因果检验,来判定变量变化的先后时序,之后,进行协整,看变量是否存在长期均衡。《/p》第四,长期均衡并不意味着分析的结束,还应考虑短期波动,要做误差修正检验。《/p》
Eviews 如何做格兰杰检验
第一步:选定两序列,以group打开(点右键,选open as group)得弹出窗如图:
第二步:选菜单view,点选最后一项granger causalty test.得弹出窗,输入阶数,一般2或3即可,点OK,得结果。
经济学家开拓了一种试图分析变量之间的格兰杰因果关系的办法,即格兰杰因果关系检验。该检验方法为2003年诺贝尔经济学奖得主克莱夫·格兰杰(Clive W. J. Granger)所开创,用于分析经济变量之间的格兰杰因果关系。他给格兰杰因果关系的定义为“依赖于使用过去某些时点上所有信息的最佳最小二乘预测的方差。”